Refine Your Search

Topic

Author

Search Results

Technical Paper

Optimization of Heavy-Duty Diesel Engine Operating Parameters Using A Response Surface Method

2000-06-19
2000-01-1962
A study of statistical optimization of engine operating parameters was conducted. The objective of the study was to develop a strategy to efficiently optimize operating parameters of diesel engines with multiple injection and EGR capabilities. Previous studies have indicated that multiple injections with EGR can provide substantial simultaneous reductions in emissions of particulate and NOx from heavy-duty diesel engines, but careful optimization of the operating parameters is necessary in order to receive the full benefit of these combustion control techniques. The goal of the present study was to optimize the control parameters to reduce emissions and brake specific fuel consumption. An instrumented single-cylinder heavy-duty diesel engine was used with a prototype mechanically actuated (cam driven) fuel injection system.
Technical Paper

Studying the Roles of Kinetics and Turbulence in the Simulation of Diesel Combustion by Means of an Extended Characteristic-Time-Model

1999-03-01
1999-01-1177
A study was performed that takes into account both turbulence and chemical kinetic effects in the numerical simulation of diesel engine combustion in order to better understand the importance of their respective roles at changing operating conditions. An approach was developed which combines the simplicity and low computational and storage requests of the laminar-and-turbulent characteristic-time model with a detailed combustion chemistry model based on well-known simplified mechanisms. Assuming appropriate simplifications such as steady state or equilibrium for most of the radicals and intermediate species, the kinetics of hydrocarbons can be described by means of three overall steps. This approach was integrated in the KIVA-II code. The concept was validated and applied to a single-cylinder, heavy-duty engine. The simulation covers a wide range of operating conditions.
Technical Paper

Pressure-Swirl Atomization in the Near Field

1999-03-01
1999-01-0496
To model sprays from pressure-swirl atomizers, the connection between the injector and the downstream spray must be considered. A new model for pressure-swirl atomizers is presented which assumes little knowledge of the internal details of the injector, but instead uses available observations of external spray characteristics. First, a correlation for the exit velocity at the injector exit is used to define the liquid film thickness. Next, the film must be modeled as it becomes a thin, liquid sheet and breaks up, forming ligaments and droplets. A linearized instability analysis of the breakup of a viscous, liquid sheet is used as part of the spray boundary condition. The spray angle is estimated from spray photographs and patternator data. A mass averaged spray angle is calculated from the patternator data and used in some of the calculations.
Technical Paper

Effects of Temporal and Spatial Distributions of Ignition and Combustion on Thermal Efficiency and Combustion Noise in DICI Engine

2014-04-01
2014-01-1248
The effects of the temporal and spatial distributions of ignition timings of combustion zones on combustion noise in a Direct Injection Compression Ignition (DICI) engine were studied using experimental tests and numerical simulations. The experiments were performed with different fuel injection strategies on a heavy-duty diesel engine. Cylinder pressure was measured with the sampling intervals of 0.1°CA in order to resolve noise components. The simulations were performed using the KIVA-3V code with detailed chemistry to analyze the in-cylinder ignition and combustion processes. The experimental results show that optimal sequential ignition and spatial distribution of combustion zones can be realized by adopting a two-stage injection strategy in which the proportion of the pilot injection fuel and the timings of the injections can be used to control the combustion process, thus resulting in simultaneously higher thermal efficiency and lower noise emissions.
Journal Article

EGR Dilution and Fuel Property Effects on High-Efficiency Spark-Ignition Flames

2021-04-06
2021-01-0483
Modern spark ignition internal combustion engines rely on fast combustion rates and high dilution to achieve high brake thermal efficiencies. To accomplish this, new engine designs have moved towards increased tumble ratios and stroke-to-bore ratios. Increased tumble ratios correlate positively with increases in turbulent kinetic energy and improved fuel and residual gas mixing, all of which favor faster and more efficient combustion. Longer stroke-to-bore ratios allow higher geometric compression ratios and use of late intake valve closing to control peak compression pressures and temperatures. The addition of dilution to improve efficiency is limited by the resulting increase in combustion instabilities manifested by cycle-to-cycle variability.
Technical Paper

Effect of Compression Ratio and Piston Geometry on RCCI Load Limits and Efficiency

2012-04-16
2012-01-0383
The present experimental study explores the effects of compression ratio and piston design in a heavy-duty diesel engine operated with Reactivity Controlled Compression Ignition (RCCI) combustion. In previous studies, RCCI combustion with in-cylinder fuel blending using port-fuel-injection of a low reactivity fuel and optimized direct-injections of higher reactivity fuels was demonstrated to permit near-zero levels of NOX and PM emissions in-cylinder, while simultaneously realizing high thermal efficiencies. The present study consists of RCCI experiments at loads from 4 to 17 bar indicated mean effective pressure at engine speeds of 1,300 and 1,700 [rev/min]. The experiments used a modified piston to examine the effect of piston crevice volume, squish geometry, and compression ratio on performance and efficiency.
X